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Abstract. Standard approximation schemes in kinetic theory are compared with the effective 
medium approximation ( E M A ) ,  that was developed earlier for the stochastic Lorentz gas 
on  cubic lattices. In models with reflecting collisions the low-density results are in strong 
disagreement with molecular chaos and in excellent agreement with the simulation data. 
The present analysis identifies the diagrams that are taken into account in the different 
approximations. The EMA accounts in a self-consistent way for all nested ring diagrams. 

1. Introduction 

The interest in discrete fluid models is rapidly increasing, the central topic being the 
investigation of the applicability of cellular automaton (CA) [l] fluid models for 
studying hydrodynamic phenomena [2]. In short, cellular automata are characterized 
by the discreteness in space and in time, which allows implementation on computers 
with relative ease. They evolve by means of updating rules. These rules in general do 
not represent fluid motion, but a subclass of these rules (then called collision rules) 
can be identified such that they reflect, for instance, conservation of particle number, 
momentum and/or energy. However, in most current models energy does not seem to 
be a quantity that can be properly defined to yield an independent conserved quantity. 
The most studied model in this field is the so-called FHP-mOdel[2], named after Frisch, 
Hasslacher and Pomeau, with or without rest particles, the moving particles having 
unit speed in one of the six directions of an hexagonal lattice. 

Relaxing the concept of momentum conservation (and thus the notion of sound- 
waves), a class of other well known models can be regarded as cellular automata, such 
as hopping diffusion, random walks on lattice with disorder [3,4], and lattice versions 
of the clasical Lorentz gas [5]. In these models, the particles move independently of 
one another in an array of fixed scatterers/impurities. 

Recently, we have considered a lattice Lorentz gas, with scatterers put at random 
on the sites of a square or (hyper)cubic lattice [6-81. The collisions of the (mutually 
non-interacting) moving particles with these scatterers depend stochastically on the 
direction of the velocity of the incoming particles. The quantities of main interest are 
the response function, the velocity autocorrelation function ( VACF) and the diffusion 
coefficient. Others have used deterministic collision rules (deflection angles) that are 
tied to the lattice [9, 101, mirror-like reflections [ 111 or deflections that depend on the 
parity of time [12]. For these Lorentz gases, the diffusion coefficient can easily be 
approximated using the molecular chaos assumption (Boltzmann appproximation). 
For the stochastic Lorentz gas, an analysis was performed that extends beyond 
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Boltzmann [8], predicting values of the diffusion coefficient which agree very well with 
computer simulation data [6-81. The success of this treatment is especially demonstrated 
in cases where the Boltzmann approximation fails, which occurs if the collision rules 
are such that backscattering of the moving particles at scatterers is possible. The method 
used is a generalization of the standard effective medium approximation (EMA)  that 
has been applied successfully in the description of diffusion in bond percolation models 
[3, 13, 141. In the standard EMA the system is described by a single effective rate 
constant; our generalized EMA contains in principle b - 1 effective rate constants, where 
b is the coordination number of the lattice. 

The stochastic Lorentz gas proves to be a model for which several approximations, 
that are standardly used in kinetic theory, can be evaluated explicitly; this in contrast 
to continuous models, where explicit calculations require great efforts, even on the 
level of the ring approximation [ 15,  161. The latter will be defined later in the context 
of the present model. Calculations have been carried out for the hard-sphere gas [ 171 
and the continuous Lorentz gas in two and three dimensions [18,19]. Only for the 
latter, more complicated diagrams (than rings) were determined [ 191. The simple lattice 
structure of the models allows explicit calculations to investigate the success and failure 
of these approximations in comparison with the effective medium approximation, as 
they work out for these models. This is the main objective of this paper. In addition 
to the Boltzmann approximation, the standard techniques we will discuss are the ring 
approximation, the repeated-ring approximation and their self-consistent formulations. 
Here, the term ‘ring’ is related to the return of the moving particle to a site it has 
already visited before, thus inducing correlations between collisions. The main result 
is that EMA gives a good approximation, although for instance orbiting particle trajec- 
tories [20] and general (Cayley-) tree-like trajectories are nor accounted for. Very 
recently the low-density limit for the diffusion coefficient has been calculated exactly 
also for cases with reflections [21]. Then the dominant contributions come from 
trajectories on a Cayley-tree structure. In this paper we will show that EMA accounts 
for all ring and nested ring events. Although more complicated diagrams are not 
accounted for, the EMA results coincide, in the low-density limit, with the exact results. 

The paper is organized as follows. In section 2 we give a description of the model 
and repeat some formalism needed from [8]. Then we consider fluctuation expansions 
in terms of free (empty lattice) propagators (section 3) and in terms of ‘Boltzmann’ 
propagators (section 4), the latter already having diffusive motion built in. In the 
remaining sections we discuss several approximations that collect the relevant terms 
from these fluctuation expansions. The Boltzmann approximation is given in section 
6, and several ring approximations in sections 7 and 8. Next, in section 9, the effective 
medium approximation is formulated and the weights of the contributions are compared 
with that of a formally exact expansion. The details on weights are shifted in appendices. 
Finally, in section 10, numerical results are presented that show the breakdown of 
several of these approximations in comparison with EMA and simulation data, 

2. Chapman-Kolmogorov equation and correlation functions 

In this section we introduce the model by repeating some parts from [8] needed for 
a self-contained presentation. We consider a Lorentz gas on a &dimensional cubic 
lattice [6,8,22] with N sites, denoted by n = ( n , ,  n , ,  . . . , n d ) ,  unit lattice distance and 
a fraction c of sites-chosen at random-occupied by scatterers. A particle moves with 
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unit speed from site to site. Its trajectories are straight lines until the particle hits a 
scatterer, where it will be scattered into one of the lattice directions with probabilities 
depending on the incident velocities. 

Let p ( n ,  i, t )  be the probability in a given configuration of scatterers that at the 
integer-valued time t the moving particle is at site n and arrives there with ‘velocity’ 
i (i.e. comes from lattice site n - e i ) .  Here velocity variables, denoted by labels i, j ,  . . , 
( i ,  j = 1,2, . , , , 2 d  mod(2d)), refer respectively to the lattice directions e,, e2, . . . , e d ,  

-el( = e d + l ) ,  - e 2 , .  . . , - e d .  We further use the convention that Greek labels (a, p = 
1,2,. . . , d )  denote Cartesian components of d-vectors. The microscopic or fluctuating 
density of scatterers is described by the random variable cn taking on the values 

1 with probability c 
c n = { o  with probability 1 - c. 

The distribution function for the moving particle is ( p (  n, i, t ) ) ,  where (.  . .) denotes the 
quenched average over the configuration of scatterers, i.e. an average over all cn with 
weight function (2.1). 

The scattering laws are specified by introducing a transmission probability a, a 
reflection probability p and a deflection probability y for any orthogonal direction, 
with normalization 

a + p +2(d - 1) y = 1. (2.2) 

We write this in the form of a 2d x 2d transition matrix 

Y 
Y 
a 

Y 
Y 
P 

. .  

Y 
Y 
P 

Y 
Y 
a 

(2.3) 

with I;, W ,  = E ,  W ,  = 1. We shall also frequently use the 2d x 2d velocity matrices V ,  
( a  = 1 , 2 , .  . . , d )  which are diagonal matrices with components 

( v Q ) l ] = S t J e l Q  =6v(SX,-Sl.a+d)’ (2.4) 

The Chapman-Kolmogorov equation for the probability distribution p (  n, i, t )  in a 
given realization of scatterers is [23]: 

p ( n + e , , i , t + l ) = ( l - c n ) p ( n , i ,  t ) + c , C  W I J p ( n , j ,  t )  (2 .5 )  
J 

or in (2dN x 2dN)-matrix form and 2dN-vector notation: 

p (  t + 1) = S-l( 1 + C T ) p (  t )  = (1 - L ) p (  t )  (2.6) 

where S is the ‘free streaming’ operator 

Sni,, = Snmav = Sn+e,.marJ (2.7) 
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C is the diagonal matrix of density fluctuations and T = W - 1 the collision operator, 
diagonal in the space variables: 

Cn,,, = c n ~ n , 4 J  (2.8) 

Tn1,mJ = Snm w, - &,SI] (2.9) 

and L = 1 - S- ' (  1 + CT) is the stochastic Liouville operator. Equation (2.6) has the 
formal solution for t B 1 [8]: 

p (  t )  = [S-Y 1 + CT)]'-'S-'p(O) = (1 - L)'- 's- 'p(o).  (2.10) 

Henceforth, we will only indicate the explicit space and/or velocity dependence if 
clarity requires such. Equation (2.6) applies to the conditional probability P (  t ) ,  with 
initial condition P ( 0 )  = 1 or Pnl,ml(0) = S n m S , .  

Next, a vector notation is introduced which decomposes the 2d-dimensional velocity 
space into the eigenspaces of a general cubic symmetric matrix, i.e. a matrix of the 
form (2.3), without constraint (2.2). The simultaneous eigenvectors of these matrices 
are 11) with components Il), = 1 and i = 1, 2 , .  . . ,2d, I VQ) = VQll) and ldVi - 1)= 
(dV: - 1)11) with a = 1,2 , .  . . , d. Its eigenvalues are a + p  +2(d  - l )y ,  LY - p  and a + 
p - 2 y, respectively, having multiplicity 1, d and d - 1, respectively. Their diagonaliza- 
bility implies that the cubic symmetric matrices commute. The inner product is defined 
as 

For details we refer to [8]. 
The quantities of interest are the response function, the velocity autocorrelation 

function and the diffusion coefficient. They can all be expressed in terms of the two 
time probability distribution p in the steady state or in terms of the matrix of conditional 
probabilties P and a uniform initial distribution (2dN)-', related by: 

We obtain the propagator from this by a Laplace transform, which, for discrete times, 
is conveniently written as 

0 

r(z) = 1 ( i + z ) - i ( ~ ( t ) ) = ( ( z + ~ ) - l ~ - l )  
1 = 1  

=([ ( l+z)S- l -CT]- ' ) .  (2.13) 

The dynamic structure function or response function 9( q, z) is the Fourier-Laplace 
transform of the probability for a displacement ( n  - m): 

and the Laplace transform of the VACF becomes 

(2.15) 
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To obtain the diffusion coefficient 
1 

D = O(0) -- 
2d 

one has to evaluate the VACF at z = 0 [8]. 
The Fourier transform of a matrix A,,,, is defined as 

1 
N n,m 

A,( q, 4') = - e-iqnA,,,ml ei9". 
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(2.16) 

(2.17) 

For a translationally invariant matrix A, i.e. depending only on ( n  - m), the Fourier 
transform is diagonal with elements 

(2.18) Aij( q )  = 1 e-i4nAni,oj 
f l  

and inverse transformation 

5, 1 
A,i,mj =- 1 eiq"Aij(q) = ei9"A,(q). 

N q e l B Z  
(2.19) 

The q are reciprocal lattice vectors, located in the first Brillouin zone (iBz) of the 
hypercubic lattice. In the thermodynamic limit, where the number of lattice sites n 
becomes large, the q-sum may be replaced by an integral, and the integration ymbol 
stands for 

(2.20) 

In [8] we evaluated the diffusion coefficient 0, in some approximations of the 
propagator (2.13). The most drastic approximation is to assume molecular chaos 
(Boltzmann approximation) and replace the random matrix C in (2.13) by its average 
( C )  = c l .  This is equivalent to replacing the Lorentz gas on a quenched random lattice 
by a type of random walk on a uniform lattice with average transition rates [25]. A 
more sophisticated approximation, developed in [8], is the so-called effective medium 
approximation (EMA).  It is obtained by imposing that the first order correction to a 
resummation of this Boltzmann propagator be vanishing. This yields a self-consistent 
relation for the eigenvalues of the effective collision operator T'. 

The goal of this paper is to present a systematic analysis and a discussion of the 
standard approximations, used in kinetic theory, such as the Boltzmann equation and 
the ring equations. We will compare the contributions accounted for by the different 
approximations. We will do this in the context of fluctuation expansions, involving 
free propagators, Boltzmann propagators or effective medium propagators, respectively. 

3. Free propagators 

The matrix elements T , , ( z )  of the propagator (2.13) of the moving particle, averaged 
over fixed configurations of scatterers, may be expanded in collision sequences. In 
order to do so, we denote the propagator of the empty lattice (all c, = 0) by r'= 
(( 1 + z ) S  - 1)-' and call this the free particle propagator. Note that by translational 
symmetry T,, , ,(z)  and Ti,(z) depend only on ( n  - m). The resolvent operator in (2.13), 
with L defined in (2.10) is expanded as: 

( z  + L)-W = r"+ rkTrf+ rfcTrfcTrf+. . . . (3.1) 
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Here, (CT),, = c,TS,, is diagonal and c, indicates the presence ( c ,  = 1) or absence 
( c ,  =0)  of a scatterer at site n. The intermediate sums in (3 .1 )  over scatterers involve 
factors c , c , , c ,~ ,  , . . , where n, n ,  , n 2 ,  . . . , run over the whole lattice and thus may refer 
to the same or to different positions of scatterers. These products of c are the weights 
for the terms in the expansion. The quenched average in (3.1) then corresponds to the 
average of these weight factors, in which we have to account for correlations between 
the c, in the above sequence. Let 1, I , ,  1 2 , .  . . , be the number of occurrences of the 
scatterers at respectively n, n , ,  n 2 , ,  . . , in a given term in the expansion (3.1), then the 
weight factor is 

(3.2) 

where k is the number of diferent scatterers involved. Here we used the moments py 
of the distribution of c, : py = ( c l )  = ( c , )  = c. Thus, a weight factor ck  is assigned to 
each term in a multiple sum in (3 .1 )  that involves k diffeent scatterers. The formal 
expansion of the propagator r in (2 .13)  can now be written as 

where the relation rmm = Too has been used. The individual terms in this series can be 
represented by diagrams (see figure 1). The solid lines represent free propagators Tf 
and dots represent T-vertices. Dots referring to the same scatterer are connected by 
arcs. The first line on the RHS of figure 1 represents the terms written explicitly in (3.3).  
The last term in (3.3)-and similar terms in figure 1-representing two subsequent 
collisions of the moving particle with the same scatterer and with only intermediate 
free streaming are vanishing of course, as at least one other scatterer is needed for the 
particle to return to the first scatterer. 

Figure 1. Diagrammatic expansion of exact propagator r in free propagators (-) and 
T-vertices (O) ,  see equation (3.1). Only some typical low-order diagrams are shown. 

Because the restricted sums no longer represent matrix products, we want to 
eliminate the constraints. This will yield new weight factors for the diagrams. As an 
illustration, consider the RHS of the expansion (3.31, where we add the term with 
m = rn' to the third term and subtract it from the fourth one (as it is of the same 
structure as all the terms in this summation). This forces us to change the weight of 
the fourth term from c to K:= c - c 2 .  Thus, if a scatterer occurs twice, the corresponding 
weight is K ; ,  and if a scatterer occurs j times, its weight is K:.  A constructive proof 
of this is given in appendix A. In general the new weightfactor for a diagram with 
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unconstrained sums is TI:=,( K,”)’J if the diagram has l, ( j  = 1,2, . . .) sets of j connected 
vertices [26]. Here K,” are the cumulants corresponding to the moments py = (c!,) = c. 
From the generating functions for the moments and cumulants: 

one obtains the expressions for ~ j ) ,  where we defined p:= 1. An explicit calculation 
is given in appendix B. As an illustration we quote the weights of the diagrams in 

( K : ) ’ ,  and K : K : ,  respectively. We stress that the relation with these cumulants was 
known before only for the first few terms [26]. Appendix A contains a general proof 
that the weights are indeed the cumulants of the probability distribution (2.1). 

In standard nomenclature the diagrams #2, 3, 5, 9 , .  . . , in figure 1 represent 
uncorrelated collisions; diagrams #4, 6, 8, 10, .  . . , simple ring collisions; diagrams #7, 
12, . . , , repeated ring collisions and diagrams like # 11 nested ring collisions (rings within 
rings). The last line of figure 1 shows two more complicated non-ring diagrams 
(diagrams #13 and #14). 

As a motivation of the approximations to be discussed later, we note that the 
various apprximations in kinetic theory are based on various resummations of subsets 
of diagrams. To select these subsets, we have to estimate the magnitude or phase space 
of different diagrams at small concentration of scatterers, c, and at large times, where 
t is typically on the order of the mean free time t m f =  l/c. In a systematic resummation 
scheme one selects out of the whole set of O(ck)-diagrams all those that are most 
divergent as t + CO, and sum over k. In this sense, most resummations considered here 
are not systematic. 

Instead of calculating in detail some of the terms in the expansion in free propa- 
gators, which has not been done yet, we will just give some phase space estimates for 
the various collision sequences that can occur (see figure 2 ) .  The method is the same 
as was used by Hauge and Cohen [20]. 

figure 1. They are 1, K ? ,  ( K ? ) ~ ,  K ; ,  ( K ? ) ~ ,  K ~ K ; ,  K : ,  K : K ? ,  ( K ? ) ~ ,  ( K , )  0 2  K ~ ,  0 ( K : ) ~ ,  K ~ ,  0 

d)  O(1) e)  O(c) 

Figure 2. Comparison of phase space for some typical particle trajectories. ( a )  uncorrelated 
collisions, ( b )  ring collision, ( c )  orbiting collision sequence, ( d )  nested (repeated) ring 
with backscattering ( p  # 0) and ( e )  nested ring without backscattering. 
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In the case of uncorrelated collisions, which are accounted for in the Boltzmann 
approximation, the phase space for k uncorreiated collisions is proportional to ( c t ) k  - 
0(1), with t - tmf, see figure 2 (a ) .  In a similar fashion one estimates the phase space 
of ring collisions to be c( c t )k - '  - O( c) (see figure 2( b), where the last vertical motion 
of the moving particle has a length that is fixed by the first one, in order to be on the 
same horizontal line after the collision; consequently this piece does not add a factor 
t - fmf= l/c.) For orbiting collisions [20] (see figure 2(c))  the same argument applies. 
For models with backscattering ( p  # 0) there exist purely retracing 'nested' (repeated) 
ring collisions (see figure 2(d)),  which have the same phase space as the uncorrelated 
collisions. For cases without backscattering retracing events have typically a ring at the 
end (see figure 2(e)), thus yielding c(ct)k-l - O(c). 

These estimates clearly show that for cases with backscattering it will not be sufficient 
to resum only uncorrelated collisions (as will be the case in the Boltzmann equation), 
since there are correlated collisions (see for instance figure 2(d)) that have the same 
phase space. These estimates motivate the approximations constructed in the following 
sections. 

4. Boltzmann propagators 

The free propagators described in section 3 correspond to straight line motion and do 
not exhibit any diffusive behavior. To obtain diffusive behavior the particle has to 
suffer collisions. This can be achieved by including partial resummations of the terms 
on the RHS of (3.3). In the standard case the uncorrelated collisions constitute the 
complete set of most divergent diagrams for c + 0 and t + CO, such that ct - const. A 
standard procedure to remove the most? divergent long-time behaviour of the propa- 
gators at low densities is to introduce Boltzmann propagators GO, by resumming only 
uncorrelated collisions in the expansion (3.1). This is exact for short times, where the 
moving particle has not yet had the possibility to hit the same scatterer twice. (For 
instance, in absence of reflections this is the case up to four time steps.) The resummation 
is carried out by replacing every occurrence of the random matrix C by its average, 
being c times the unity matrix. The Boltzmann propagator Go is then obtained by 
summing all these contributions from uncorrelated collisions, shortly written as 

Go = Tf + r'cTGo (4.1) 

The formal expansion of the resolvent operator in (3.1) in terms of these Boltzmann 
propagators is obtained from (4.1) and (4.2) by replacing Tf by Go and c T  by ( C  - c ) T .  
This leads to an expansion of the propagator r in Go, where c, in (3.1), (3.2) and 
(3.3) is replaced by Sc, 3 c, - c. The analog of free propagation in (3.1) (c, = 0) is now 
propagation involving only uncorrelated collisions (Boltzmann propagation: Sc, = 0 
or c, = c). The vertices accounted for explicitly (c, = 1 in (3.1)) now have the weights 
(1 - c) or (-c) for c, = 1 or c, = 0, respectively. The moments p: of the c, are replaced 
by the central moments p I  = (( ac,)') = ((c, - c)'), yielding the expansions in Boltzmann 

+ As we shall see later on, in LGCAs there exist correlated collision diagrams which are as divergent as the 
uncorrelated ones. 
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Note that the analogues of the second and third term in the expansion (3.3) are 
vanishing here, because p,  = (Sc,) = 0. Finally, the constraints on the summations are 
eliminated by replacing the pI in (4.3) by the cumulants K~ (see appendix A). The pI 
and K (  are defined through their generating functions: 

(4.4) 

The cumulants K /  and K :  can be expressed in terms of moments as well as in terms of 
the concentration c, as will be explained in appendix B. Here we only note that 
~ / = ~ ~ ( 1 3 2 )  and K ~ = ~ , = O  and u 2 = p 2 = c ( 1 - c ) .  

We return to the expansion of the exact propagator in terms of Boltzmann propa- 
gators Go (compare (3.1)). Isolated T-vertices do not occur in the Boltzmann expansion, 
because K~ = p,  = 0, and the new weight factor for a diagram is l - I I f=2(~ j ) f~ .  The exact 
propagator in terms of Boltzmann propagators is diagrammatically shown in figure 3; 
in terms of unconstraint sums (see appendix A) it is explicitly written as: 

0 

rnO= GO,,+ K 2  GO,,, TG~oTG$,+ K 3  1 GO,,, TG&TG&TGO,,, 
"I " I  

-I- K 4  1 GO,,, T G ~ o  TG:o TG:o TGO,,o 
n l  

r =  - +  A + M  

+a+- 
+ - + -+- 

(4.5) 

+ , . .  

Figure 3. Diagrammatic expansion of exact propagator r in uncorrelated collision propa- 
gators Go (-) and collision operator fluctuations ST= Sc,T (O) ,  see equation (4.3). All 
terms up to fourth order are shown. 
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( b )  B = ==a+-+- 

Figure 4. Dyson equation (4.6) in diagrammatic form ( a )  with collision (self-energy) 
diagrams ( b ) .  

Translational symmetry has been used in GO,, = G:o and in the expressions inside 
brackets. We summarize equation (4.5) in the form of a Dyson equation: 

r =  Go+GoBr=[Go- ' -B]- '  (4.6) 

or diagrammatically in figure 4. B denotes the set of collision (self-energy) diagrams 
beyond the Boltzmann or uncorrelated collision diagrams, see figure 4( b ) .  In Fourier 
representation the single particle propagator becomes 

(4.7) f ( q ,  z )  = [ ( I  + z )  eiqV - 1 - c ~ -  B(q ,  z)]- '  

and the Laplace transform of the VACF is, on account of (2.15), 

1 
d ,  

0 ( z )  = - ( v, 1 [ z - cT - B (0, z )  ] -I1 v, ). (4.8) 

We note that the q-independent matrix 6(0, z )  also has the cubic symmetric form 
(2.3). So its eigenvectors are known and also the relation between their eigenvalues 
and the elements of the matrix B ( 0 ,  z )  (see discussion below (2.10)). Consequently, 
the above equation can be written in terms of eigenvalues as 

1 1 
d z - Ct ,  - b,( Z )  

0 ( z )  =- 

where b,(z) is the eigenvalue of &CO, z )  corresponding with I V,). 

(4.9) 

5. Approximate kinetic equations 

In absence of exact results for the formal solution (2.10) of the Liouville equation, or 
its expansion in free propagators or Boltzmann propagators, an approximate method 
can be followed to calculate some quantities of interest, e.g., diffusion coefficient or 
velocity autocorrelation function (2.15). In the remaining part of this paper we describe 
the standard approximations in the context of the present model. We start with some 
guiding remarks concerning the methods. 

An obvious approximation is to assume molecular chaos (Boltzmann approxima- 
tion), i.e. neglecting correlations between collisions. As there is no interaction between 
moving particles, these correlations necessarily correspond to visits of a moving particle 
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to a scatterer it has already hit before; of course correlations occur also in case the 
revisited site is empty, and we have so-called ‘virtual’ collisions. The return to a site 
is usually called a ring event, that is, if all intermediate collisions are uncorrelated. All 
approximations to be discussed here, going beyond Boltzmann, involve ring integrals; 
they are the ring approximation (RA), repeated-ring approximation ( RRA), self- 
consistent ring approximation (SRA), self-consistent repeated-ring approximation 
(SRRA) and finally the effective medium approximation, as developed in [8]. Events 
not accounted for are diagrams referring, for instance, to crossings between different 
scatterers, such as the last explicitly written terms in (4.3) (cf. figure 3) or the last line 
of figure 1. Evaluation of such (non-ring) diagrams would involve (multiple) sums 
over the lattice (a subclass of which was calculated for the bond percolation model 
[27-291). Ring diagrams do not exhibit these technical difficulties. 

6. Boltzmann approximation 

This approximation accounts for all uncorrelated collisions. For cases without back- 
scattering ( p  = 0) it is expected to give the correct low-density behaviour, as we have 
argued with the help of figure 2. These phase space estimates show that the most 
divergent diagrams for c + 0, t +cc with ct = const are the uncorrelated collisions of 
figure 2 ( a ) ,  because the retracing nested rings of O(1) (see figure 2(d) )  are absent. 
The uncorrelated collision sequences are the diagrams in (3.1) with isolated T-vertices. 
They have been summed to give the Boltzmann propagator (4.2). The higher order 
collision operator in (4.6) vanishes in this approximation: Bo = 0. The Fourier transform 
of the single particle propagator becomes then 

F0(4, z )  = bo(q, z) = [(I  + z )  eiqv - 1 - CTI- ’  (6.1) 

where $ ( 4 )  = exp(iqV) is the Fourier transform (2.18) of the translational invariant 
free streaming operator (2.7). The diffusion coefficient is given by (2.16) with the VACF 
given by (4.8) which can be calculated in a straightforward manner. In fact the model 
is approximated by a uniform lattice with modified transition probabilities a’ = 
1 - c( 1 - a), p’ = cp and y’ = cy  and the diffusion coefficient is [4,8,24,25,30]: 

1 -- 1 1 --= 1 
D =  

d ( l - a ’ + P ’ )  2d d c ( l - c ~ + P )  2d 

where d is the number of space dimensions. For the completely filled lattice ( c  = 1) 
the Boltzmann approximation is exact, as there is no disorder to yield correlation 
effects. Recall that in the limit c + 0 the Boltzmann approximation is only exact for 
cases without backscattering, i.e. p = 0. 

7. Ring and repeated-ring approximation 

In the next approximation ring events will be taken into account. For models without 
reflection this will affect the O ( c )  contribution, while for the models with reflection 
inclusion of ring terms is expected to modify even the O(1) term in the low-density 
expansion. The ring diagram (the simplest diagram that involves correlation between 
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collisions) is the first term on the RHS of figure 4( b ) .  Replacing the weight K ~ (  = c( 1 - c)) 
by its low- or high-density approximation, we define the ring approximation by 

BRA = CTROT for small c 
(7 .1)  

B~~ =  TROT for small p = 1 - c 

where Ro is the simple ring integral 

~ ' ( z )  = G : ~  = & O ( q ,  z )  = [ ( I  + Z )  eiqv - 1 - CTI- ' .  (7 .2)  I, 5, 
The matrix Ro( z)  = G:o( z )  represents in this approximation the Laplace transform of 
the matrix of conditional probabilities ( Poo( t ) )  to find the particle at the origin given 
that it started at the origin at t = 0. The ring kinetic equations for low and high densities 
are then expressed by the propagators 

fRA(q, z )  = [( 1 + z )  elqv - 1 - cT-cTR' ( z )  TI-' (7.3) 

and 

P R A ( q , z ) = [ ( l + z ) e i q V - l -  T + ~ T - ~ T R ' ( Z ) T I - '  (7.4) 

respectively. Note that according to this approximation the particle is moving, between 
subsequent returns to the origin, in a 'modified' Boltzmann background which, however, 
depends on the Laplace variable z. Observe again that T, Ro and B R A  are (commuting) 
cubic symmetric matrices. 

The ring approximation thus requires calculation of the ring integral over the 
Boltzmann propagator (6.1). Instead of calculating the full integral, using a decomposi- 
tion into eigenspaces of the collision term cT, one can also evaluate explicit contribu- 
tions to the ring integral for some specific particle trajectories. This can be done by 
expanding the integrand in (7.3) or (7.4) in powers of real and virtual collision matrices, 
being the diagonal and off-diagonal part of T, respectively. However, we have not 
carried this out. 

Next we consider the repeated-ring approximation. Here one takes into account all 
events with multiple returns of the moving particle to the same site, i.e. the first and 
second term and analogous higher order terms on the RHS of figure 4(b). The weight 
factors K f  are replaced by their low- or high-density value (B8). The cubic symmetric 
collision operators are then 

B ~ ~ ~ = C T R ' T + C T ( R ~ T ) ~ + C T ( R ~ T ) ~ + .  . .=cTR'T(I-R'T)- '  (7 .5)  

and 
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8. Self-consistent ring approximations 

The self-consistent ring approximation resembles the ring approximation (7.3). It is, 
however, quite different in the sense that the cubic symmetric collision operator 

BSRA= cTRT (8.1) 
and the ring operator R are obtained from 

(compare (7.2)) where the propagator 6 depends itself on R in a self-consistent manner: 

PSRA(q, z ) =  e(q, z ) = [ ( l + z )  e iqV- l  - c T - c T R ( z ) T ] - ' .  (8.3) 
Iteration of the equations (8.2) and (8.3) yields the nested ring diagrams (rings within 
rings). The high-density limit is treated analogously. 

Obviously, the repeated-ring approximation can be given the same treatment. Here 
the collision operator T +  TRT in (8.3) is replaced by repeated rings; consequently 

BR,A=cTRT+cTRTRT+. . . = c T R T ( l - R T ) - '  (8.4) 
where the weights K~ are again approximated by their low-density values: K f  - c. 
propagator, now being 

The self-consistent ring integral (8.2) is again defined in terms of the complete 

(8.5) 
And similarly for the high-density case. The self-consistent repeated-ring approximation 
is then obtained by iteration of (8.2) and (8.5). This yields nested repeated and repeated 
nested ring diagrams, henceforth referred to as nested rings. Each diagram obtains the 
weight ck ,  where k is the number of different scatterers involved in the diagram. At 
this point it may be instructive to write out some iteration steps explicitly in diagram- 
matic form. For this we refer to figure 5 .  

?,,,A( 4, Z )  = 6( 4, Z )  = [ (1  + Z )  e''" - 1 - CT( 1 - R( Z )  T ) - ' ] - ' .  

b) B = A = n + - + m t  

t 

Figure 5. Self-consistent repeated-ring ( S R R A )  equation ( a ) ,  with collision diagrams (b). 
( c )  iteration of ( a )  and ( b ) .  
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9. Effective medium approximation (EMA) 

The effective medium approximation has been applied successfully in the past to the 
problem of hopping models, random resistor networks and bond percolation models. 
One way to derive this is to assume effective transition rates for every link except one, 
which is treated exactly [31]. Another, equivalent, method is to consider a fluctuation 
expansion around an effective medium, which is defined in a self-consistent manner 
by imposing that the first order perturbation be zero [ 13,141. The EMA equation resulting 
from these operations qualitatively describes the diffusion coefficient and velocity 
autocorrelation function in the above classes of models [14]. For the present model, 
the EMA is generalized to three effective transition rates, instead of one, satisfying the 
normalization (2.2). The details are given in [8] Here we formulate it in a way that 
allows transparent comparison with the approximations discussed in the preceding 
sections. 

We introduce an EMA propagator 

fEMA( q, z )  = 6( q, z )  = [ (1 + z )  eiqV - 1 - cT'( z ) ] - '  (9.1) 

where cT + B in (4.7) is replaced by an effective (as yet unknown) collision operator 
T'(z).  Then we formally expand the exact propagator (2.13) in powers of ST,, defined 
as ST, = c,T - cTe, and resum all repeated visits of the moving particle to the same 
scatterer. This is achieved by replacing ST, by 0, = ST,( 1 - RST,)-' with R ( z )  = Goo(z) 
and by imposing that consecutive intermediate site labels are different. The result is 

r n o =  G n o + C  ~ ~ n l ~ @ f l l ~ ~ n l o +  c ~ n n ~ ~ ~ . , ~ ~ n 1 . , ~ ~ . , ~ ~ n 2 0  
n1 n l +  n2 

+ c ~ ~ n n l @ n , ~ n l n 2 ~ ~ 2 ~ n 2 n l @ n l ~ n l n 2 ~ n 2 ~ n * ~ ~ + ~  * . * (9.2) 
nl f. "2 

The essential step [13,14] in the EMA is to choose T'(z) such that (0,)=0 (EMA 

condition) and neglect all higher-order terms in 0,. Just because of the EMA condition, 
non-vanishing higher-order terms are at least fourth order (last line in (9.2)). Hence 
the EMA propagator is given by (9.1), where T' (z )  is determined in a self-consistent 
manner from the EMA condition (0,)=0. Writing out this average with the help of 
(f(c,)) = cf( 1) + (1 - c)f(O) yields, after some rearrangements, the EMA condition: 

= O  C 1 [ T -  T'+ TRT'-cT'RT"] 
1 - (  T - cT')R 1 + cRT' (9.3) 

or 

Te = T + TRT' - cT'RT' (9.4) 

where T'= T e ( z )  and R = R ( z ) .  Here R ( z )  is given through (8.2) where 6 is the EMA 
propagator (9.1). T, T' (z )  and R ( z )  are again commuting cubic symmetric matrices. 
A closer look at (9.4) shows that the EMA equation 'contains' the approximation 
schemes defined in the preceding sections. For, if we restrict ourselves to leading order 
in c, i.e. neglecting the last term, we can iterate T' = T + TRT', yielding repeated rings. 
With self-consistent evaluation of the ring matrix, one obtains the self-consistent 
repeated-ring equation. A further restriction to T'= T +  TRT gives the ring and 
self-consistent ring equation, respectively. Also for the high-density limit (9.4) can be 
shown to recover the repeated-ring collision operator. 
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In terms of the collision operator (figure 4( b ) )  we have BEMA = cT' - cT. Iteration 
of (9.4) yields an expansion of T' in powers of RT, very similar to the SSR approximation 
in (8.4): 

X 

c T e =  v , T ( R T ) ' - ' .  
I = 1  

(9.5) 

The essential difference, however, is the occurrence of different weights vI, where the 
SRRA has the same weight c for every term in the sum. The vI are also different from 
the K~ of the exact expansion (4.5). In the sequel, we will consider these coefficients 
in more detail, investigating their origin and comparing them with the exact coefficients 
K ~ .  The first few coefficients are given by 

VI = c 

~ q =  c - 6 ~ * +  10c3 - 5 ~ ~ .  

v* = c (  1 - c )  v3 = c ( 1 -  c ) ( l - 2 c )  

Note that v l ,  v2 and v3 are equal to K : ,  = K :  and K~ = K ! ,  respectively, but all 
higher-order vI are different from the corresponding K ~ .  Note also that v I  f K~ = 0; this 
is explained by the fact that the K refer to the 'self-energy' diagrams B in cT' = cT + B, 
while v1 accounts for the first term cT. The generating function A(x)  of these coefficients 
is easily obtained by renaming RT = x and cRT'= A(x) .  Then, multiplying (9.5) by c 
yields 

A ( x ) =  1 vlxl  
/ = I  

(9.7) 

where A(x)  satisfies A =  cx+xA-A', as follows from (9.4). The solution of this 
equation with boundary condition A = 0 for c = 0 is: 

(9.8) A(x)  = f { - l +  x +J( 1 - x ) ~ + ~ c x }  

(see also [8]). Taylor expansion with respect to x gives then 

/ ( I +  k - 2 ) !  c k  
v / = -  ( - l ) k  

k = l  ( k - l ) ! k ! ( l -  k ) ! '  (9.9) 

As already mentioned before, these coefficients replace the coefficients given in 
(B7) that correspond to the exact expansion (4.5). The vI can be expressed in moments, 
i.e. they originate from elimination of summation constraints, just like in the exact 
case, where counting of diagrams yields the cumulants K /  (see appendix A). The details 
of the procedure, as applied to the present case, are worked out in appendix C, where 
it is shown that the EMA propagator takes all (no less, no more) selfconsistent repeated 
ring diagrams into account. It is different from the self-consistent repeated-ring approxi- 
mation, which simply has a weight factor c for every (not nested) repeated-ring term. 
The proof proceeds as in appendix A, but starts from an expansion of the propagator 
from which all diagrams are excluded that are not of the nested ring type. 

For a comparison between the exact case and the EMA, we have to consider equations 
(B4) and (B7) for the exact theory, and equations ( C l )  and (9.9), respectively, for the 
EMA. An analysis of these expressions as a function of c shows that the exact weights 
take on wildly varying values as c changes from 0 to 1 (symmetric around c=$, 
however), while the EMA weights do not exhibit this behaviour. This difference reflects 
the contributions of non-ring diagrams. The success of EMA in explaining the simulation 
data (see next section and [ 6 ]  and [8]) could indicate that these non-ring contributions 
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cancel to a large degree. A comparison with recent exact results [21] shows that this 
is the case for the limit as c + O .  

10. Results and discussion 

We have tested the standard methods of kinetic theory, such as Boltzmann and ring 
equations, for calculating the diffusion coefficient D( c)  as a function of the density c 
of scatterers. A formal treatment of some approximation methods is given in the 
preceding sections. The general guiding principle for obtaining systematic approxima- 
tions in orders of the density is to resum systematically (to a given order in the density) 
all diagrams with the most divergent time dependence, obtained from phase space 
estimates. Agreement and breakdown of these approximations in comparison with 
computer simulations have been fully explained on the basis of these methods. However, 
the present effective medium theory gives more. It provides, in a rather unexpected 
manner, a quantitatively correct theory for the density dependence of the diffusion 
coefficient over the entire density interval, also in cases where the other approximations 
break down. For this comparison of theory and computer simulations we refer to 
previous papers [6,7,8]. 

Let us first summarize how the diffusion coefficient is obtained for the different 
approximations. The EMA result in two dimensions is given by [6,7,8] 

where t', = t ;  = t z  is the eigenvalue of the effective collision operator T' for the 
eigenvectors I Vm),  i.e. the eigenvalue relevant for the velocity autocorrelation function 
[8] ( I  = 3 refers to the tensor eigenvalues, e.g. t ;  = f : ) .  In the Boltzmann approximation 
t', in (10.1) should be replaced by t u =  - 1 S a  - p ,  as given below (2.10). The ring 
approximation is obtained by setting t ;  = tI  + tlr,tl and the repeated-ring approximation 
by t ;  = t l (  1 - rlr1)-',  where rI is the eigenvalue of the ring matrix (8.2). The self-consistent 
ring and repeated-ring approximations are similar, but with rl and t :  determined 
self-consistently through iteration of the ring integral (8.2) with the propagator 
expressions (8.3) or (8.5), respectively. The EMA result is obtained by iteration of (8.2) 
and the EMA propagator (9.1), using (9.8). For the self-consistent approximations it is 
essential to realize that they involve both the vector eigenvalues and the tensor 
eigenvalues (i.e. 1 = t ) ,  as they are coupled through the ring eigenvalues. 

For a more detailed discussion it is necessary to distinguish the cases with ( p  # 0) 
and without ( p  = 0) backscattering, respectively. We first consider models with p = 0, 
where computer simulations [ 81 show excellent agreement with the Boltzmann equation 
results for all densities. Here, the uncorrelated collisions yield the most divergent 
contributions and the Boltzmann equation results should therefore be correct as c + 0. 
And so they do, as is seen in figure 6, where we plotted the results for the Boltzmann 
equation, the EMA (deviating less than 1% from the Boltzmann results [8]), and the 
ring approximations. Apparently, the RA, RRA, SRA, SRRA and E M A  also provide 
quantitatively correct estimates for the slope of cD(c) at low and high densities. This 
is somewhat surprising since none of these approximations accounts in a systematic 
manner for all most divergent diagrams to O ( c ) .  For instance, the orbiting collisions, 
illustrated in figure 2(c), have been neglected altogether. We have no explanation why 
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C 
Figure 6. Comparison of several approximation schemes for some cases with zero reflection 
probability p. The upper set of curves is for a =&, the lower for a = O .  The E M A  is 
practically identical to the Boltzmann appproximation. The R A  and RRA practically 
coincide; the high-density SRA for a = 0 is hidden in the other curves. 

the results from the Boltzmann equation and the EMA agree so well over the entire 
density range. We also note that imposing self-consistency for the ring approximations 
unexpectedly induces stronger deviations from the Boltzmann and EMA results (see 
figure 6). One of the major results of the present work, however, is the identification 
of the events that are accounted for in EMA, where we stress that these results apply 
directly to the EMA that was initially developed for the bond percolation problem 
[3, 13,141. The (technical) proof of this is given in appendix C .  

Next we consider the simulations and their predictions for the diffusion coefficient 
for Lorentz models with backscattering, i.e. p # 0, where EMA predictions agree very 
well with the simulations over the entire density range. At low densities the Boltzmann, 
R, RR and SR approximations yield totally incorrect results, whereas the low-density 
prediction of the S R R A  and EMA are (to dominant order) in agreement with the 
simulations. The reason for agreement and deviations has been explained at the end 
of section 3 on the basis of phase space estimates. In figure 7 we plotted the results 
for the model with transition rates CY = 0, p = y = f .  As we showed previously [ 6 , 8 ] ,  
the intercept of the EMA and SRRA with the c = O-axis can be calculated analytically. 
We can show that the analogue for the SR approximation does not yield relevant results. 

Also for models with reflections ( p  # O), where the Boltzmann equation gives an 
entirely incorrect diffusion coefficient, it is not very clear why the EMA gives such 
accurate predictions of the diffusion coefficient for all densities. In order to investigate 
this, we performed some additional computer simulations at rather high values of the 
reflection probability p, up to p = 0.95. The simulations agree within error bars with 
EMA, just as for the model with p = y = f .  Apparently the diagrams that EMA does not 
account for, e.g. those that refer to backwardlforward motion between two scatterers, 
cancel to a large degree. This can be understood by noting that, due to the strong 
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Figure 7. Comparison of approximations for a model with reflection. 

reflections, the quasi one-dimensional features are enhanced. The cancellation of 
higher-order diagrams has been demonstrated before for a one-dimensional continuous 
Lorentz gas [33,34]. Our comparison of simulation data with the EMA is in line with 
these results. Quite recently, the dominant low-density behaviour for the present model 
has been calculated exactly [21]; the results coincide with the low-density limit of the 
present EMA and the SRRA, and we conclude that for c + O  the non-(nested)-ring 
diagrams cancel. 

It would be interesting to extend the present effective medium theory to different 
Lorentz lattice gases, such as the mirror model by Ruijgrok and Cohen [ 11,321 and 
to the models with chiral scatterers of Gunn and Ortufio [9,10]. Simulations of the 
mirror models with equal amounts of left and right oriented mirrors [32] show positive 
deviations from the Boltzmann results for the diffusion coefficient, whereas our stochas- 
tic Lorentz models show large negative deviations from Boltzmann. In extending the 
EMA to models with gyral scatterers it is also of interest to investigate whether EMA 

predicts (qualitatively) the existence of a percolation threshold, or at least a transition 
from extended orbits at small c to localized orbits at large c. Preliminary results obtained 
by the author indeed show a percolation threshold for the Gates model (only left-turning 
scatterers) at c, - 0.65, which is to be compared with the, also preliminary, simulation 
result c, = 0.51 [35]. 

The applications of the effective medium theory presented here and in [8] to these 
deterministic models are worked out in [36] and in a future paper. 

Finally we note that the present stochastic Lorentz gas yields surprising results for 
the long-time tails in the velocity autocorrelation function (VACF).  Even in models 
without backscattering, where D is correctly predicted by the Boltzmann and the ring 
and repeated-ring approximations, the long-time tail obtained from the R and R R  

approximation is incorrect, even to leading order in the density. The coefficient for 
the low-density tail, obtained from SRA, SRRA and EMA appears to be 50% to 100% 
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larger than that of the R and R R  approximation, depending on the model parameters, 
We refer to [36] and [37] for an investigation of the long-time tails. 

Appendix A. Exact weights 

In this appendix we outline a constructive proof that the constraints on the summations 
in (3.3) and (4.3) are indeed eliminated if we replace the moments by the corresponding 
cumulants, defined in (3.4) and (4.4). The approach is an extension of the diagrammatic 
method for the one-dimensional disordered lattice [26], where the same weight factors 
occur as in the present expansion in Boltzmann propagators (4.3); the reason is that 
in both cases one has the bimodal distribution (2.1) for the c,. We consider the 
expansion in terms of moments, of which the free propagator expansion is a special 
case (p I  + p: = c for all I ) .  It is sufficient to show that a single weight pI is replaced 
by K / ;  it is then easily concluded that this implies that a product of moments p is 
replaced by the product of the corresponding cumulants K .  

A term in the expansion (4.3) having only one factor, say, p,  corresponds to I 
repeated returns to the same scatterer. Constraint summations that reduce to this 
diagram by dropping the constraints are those diagrams that correspond to partitions 
of I over different scatterers. 

The objective here is to determine for every partition ( I , ,  I , ,  . . . , I,) of 1, correspond- 
ing to diagrams with weight pI ,p I I . .  . @/,,,, the factor in the replacement + 

p, +. . . + l,,,pI,plz. . . plm, + . . . . It will turn out that this modification is exactly the 
same as pul + K ~ .  

First we write p I , y l 2 . .  . PI,,, as @*1;1pizI.. pyl, where Z, n, = m and Z, in, = I 
(obviously, n, = 0 for i > I ) .  Note that a term with this weight corresponds to m diflerent 
scatterers. It is easly seen that for every set { n , }  there are l ! / l - I t  (i!)"rn,! of these 
diagrams. (See also [39] 24.1.2). The replacement can now be written as p, -+ X ,  with 

with ** indicating the restrictions on the set { n ! } ,  given above. We will show that the 
Y,  are such that X ,  = KI. So the remaining problem is to determine the Y,. Clearly, 
Y,  = 1 ( n l  = 1, all other n, = 0). 

For illustration purposes we first consider the simple cases of two or three 
different scatterers. In the case of central moments (i.e. p1 = 0) the quantity X4 contains 
a term p4 and a term proportional to p i ,  referring to two different scatterers. There 
is one coincidence of site labels possible, resulting in X ,  = ~ ~ - 3 p * ( = ~ ~ ) ,  because 
there are three different diagrams with weight pi (see the lower three lines of (4.3)). 
Similarly, X ,  = p5 - 10p2p3(  = K ~ ) ,  as there are 10 different diagrams with weight p2p3 ,  
The term proportional to say p2p3p4 in X ,  ( m  = 3) is subtracted once from the first 
summation for the coincidence of all site labels, and 3 times from the summation over 
two distinct site labels. The latter, in turn, is subtracted once from the first summation 
(running over only one site label). The result is -1-(-3)=+2 and thus X , =  

Generally, the number of coincidences of initially m different scatterers is seen to 
be equal to the number of partitions of m into m, subsets containing j species 
( m  = Z,jm,): m ! / n ,  m,!(j!)"'j. (Example: coincidence of two of the m scatterers, keep- 
ing all the others different, can be achieved in m!/2!(1!)"- '=fm(m-l)  ways.) Let 

2 

. . .+2X(9!) / (2!3!4!)@2p,pu,+.  . . = .  . .+2520@2p,p4+. . . . 
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k = m ,  + m,+ . , .+ m,, then the partition {m,} refers to k different scatterers, with 
k s m - 1 ,  so we have reduced the problem to a sum of the same problems with a 
smaller number of different scatterers. It is clear that we have to subtract the quantity 
m !/n, m j ! ( j ! ) m i  from the weights for diagrams with fewer different scatterers: 

m - l  

= -  y $ y  (A2) 
1 m - l  

Y m = -  E** Ykm! n 
k = l  { m ) )  , r n , ! ( j ! ) " ' I  k = l  

where ** indicates the restrictions Z,jm, = m and C, m, = k, and 9'g' is the Stirling 
number of the second kind (see [38], 24.1.2). Equation (A2) expresses Y,,, in terms of 
all Yk with k < m. Starting from Yl = 1, this is solved recursively. Using the relation 
9'p(k) m + l  - - W(k)+9'g-1) m [38], together with Y:)= 1 and Y;)= aOm we can write (A2), 
after some rearrangements, as 

The part inside brackets does not depend on m. Starting from m = 1 and using that 
9'Pjnk'Z 0 for k # 0, this equation yields Yk+l = -kYk, and with Yl = 1 we finally have 

Ym = ( - l ) " ' - I ( m - ~ ) ! .  (A4) 

Substitution in ( A l )  and comparison with (B4) shows that the X I  are indeed the 
cumulants K~ defined in (4.4). 

Appendix B. Cumulants 

In this appendix we derive the general expressions for the cumulants K O  and K in terms 
of their moments and in terms of the concentration c. As an illustration we give the 
first few cumulants explicitly: 

K : =  K q =  p~q- 3p;= C ( 1  - c ) ( l  - 6 c + 6 c 2 ) .  

The general expressions for K~ and K :  can be derived from the Taylor expansion of 
the logarithm in (4.4) and (3.4), respectively. We first do this for the general case, and 
then specialize to the K : .  First we write 

( + - I  XI 
C ( x ) = l o g F ( x ) =  c - 

k = l  k ( , ? lp lF)  ' 
Using the multinomial expansion ([38], 24.1.2), this yields 

"i 

and thus: 
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with the restrictions 1, n, = k and Z, in, = 1 on the summations, and similar with K, and 
p, replaced by K," and p," = c. This result can be used to evaluate the cumulants. In 
the case of K :  and p:,  where p? = (c!,) = c, we can take out the po from the last factor, 
yielding 

I 

K : = -  1 (-c)k(k-1)!9'ik) 
k = l  

where 9'pjk) is a Stirling number of the second kind (see [ 3 5 ] ,  24.1.2 and 24.1.4); it 
equals the number of ways of partitioning a set of 1 elements in k non-empty subsets: 

As K :  = K~ for 13 2, we can express the K~ in terms of the concentration c: 

where the first equality is valid from 1 = 2 on. 

limits of the cumulants: 
Finally, we note that (3.4) and (4.4) yield for general 13 2 the low- and high-density 

c + c 2 ( 1 - 2 i - 1 ) + . * .  c + o  
(-l) ' [p+p2(1-2'- ' )+.  . . ] p = l - c + o .  

Appendix C. Nested-ring weights 

We discuss the method that leads to an expression for the coefficients vi (equations 
(9 .5 ) ,  (9.7) and (9.9)), but now in terms of the moments p,. The reason for doing this 
is to make an identification of the diagrams that are accounted for by the effective 
medium approximation. The expression we derive yields (9.9) upon substitution of 
pi = ( ( 8 ~ ~ ) ~ )  = c( 1 - c)' + (1 - c)( -c)'  or pi = py = c'. The general idea is similar to the 
one used in appendix A; however, diagrams that are not of the (nested) ring type are 
systematically not accounted for. So we start from an expansion in Boltzmann propa- 
gators (cf. (4.3)) that only contains ring, repeated-ring and nested ring diagrams. For 
instance, the last term given explicitly in (4.3) is not of the nested (repeated) ring type, 
and therefore is absent in the present discussion. Consequently, as the other two terms 
collapse each in one way to a four-scatterer repeated-ring diagram, p4 is to be replaced 
by v4 = p4 - 2p i ,  if we drop the summation constraints. Recall that the exact case gave 
K~ = p4 - 3p:. It is easily seen that in general a pikj term (requiring them to be of the 
nested-ring type, one sees that there are 1 = i + j of them if i # j ,  or il if i = j )  reduces 
in one way to an 1-scatterer repeated-ring diagram, so the correction factor is -1. 

For higher order diagrams we have to be more careful. We cannot simply consider 
(as in appendix A) the coincidences of a set of m scatterers, because some of them 
will not lead to nested ring type diagrams, even if we would start from one. See for 
example figure 8, where all three outcomes are to be considered in an exact formulation, 
but the lower one is not admitted here. 
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Figure 8. Diagrammatic representation of removing summation constraints. The last 
diagram is not of'ths nested-ring type. 

Consider terms with weight pZ,u,,uk ; if i # j  # k # i, there are I( 1 - 1) ring diagrams 
with this weight (it is equivalent to indicating the separation points between the first 
and second, and between the second and third scatterer on an 1 element chain. 
Subsequently filling up the whole chain yields a nested ring diagram.) For each of 
these I (  1 - 1) diagrams we determine by counting in how many ways one can make a 
nested ring diagram of two different scatterers. The latter, in turn, reduce to one-scatterer 
diagrams in one way each. The total correction factor then appears to be + / ( I +  l), 
apart from a factor 1/(2!) or 1/(3!) if i, j and/or k happen to be the same. 

In the case of initially four different scatterers, we determined the correction factor 
to be - 1 ( 1 +  1)(1+2). We note that for higher order cases the number of possibilities 
rapidly increases, and the enumeration becomes more and more elaborate. 

From these low-order examples we predict that in general for k different scatterers 
out of 1, the correction factor is - ( - l ) k ( l +  k-2)!/(1-- l)!, and the vf are expressed in 
moments by 

with constraints E, in, = 1 and Z, n, = k. 
The above analysis was carried out for the case of central moments pl = (( Sc, ) ' ) ,  

i.e. no diagram contains isolated T-vertices. However, it also holds for the moments 
p? = (c!,) = c (compare appendices A and B), in which case we recover (9.9). To prove 
the validity of (C l )  we insert p ? = c  and compare the coefficient of c k  with that in 
(9.9). This requires the equality 

" 1  (1- l ) !  
i = l  n,!  ( k - l ) ! k ! ( l - - k ) !  

Qlk' E** n -= 

The equality is proved by means of generating functions 

where the RHS is obtained from the first equality in (C2). Expanding this again, using 
the multinomial formula for (1 -x ) - "  with (-:) = ( - l )"(m + n - l ) ! / ( n ! ( m  - l)!) ,  the 
RHS of (C2) follows. This shows that ( C l )  is valid both for the moments p? and for 
the central moments p,. 
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Summarizing, we have indicated a procedure that explains the weight factors 
occurring in the effective medium approximation ( E M A ) ,  based on a propagator 
expansion in which all non-nested ring diagrams are systematically neglected. 
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